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Abstract An examination is made of how the nuclear

motion Hamiltonian arises from a consideration of solutions

to the eigenvalue problem for the full Coulomb Hamiltonian

and the role played by the usual clamped-nuclei electronic

Hamiltonian in the construction of such solutions.

1 Introduction

In a paper of which Prof. Hinze was one of the authors [1],

the results of accurate clamped nuclei calculations on the

hydrogen molecule were deployed to try and decide pre-

cisely how a potential for nuclear motion might be defined

and if the nuclear masses should be treated differently in

dealing with rotations and vibrations in calculated spectral

assignments for H3
?. Since the publication of that paper, the

question has been considered by others among whom one

might cite Refs. [2–4]. The present paper, which is offered in

warm memory of Prof. Hinze, is an attempt to examine the

basis of some of the arguments offered in that paper and the

later ones. Central to the examination is an attempt to decide

precisely how the clamped-nuclei Hamiltonian might be

positioned in relation to solutions of the full problem.

2 The clamped nucleus approximation

Quantum mechanical molecular structure calculations are

most commonly attempted by first clamping the nuclei at

fixed positions and then performing electronic structure

calculations treating the clamped nuclei as providing the

field for electronic motion. Schrödinger’s Coulomb Ham-

iltonian for a system of N variables, xi
e, describing the

electrons and another set of A variables, xi
n describing the

nuclei and NT = N ? A, when the nuclei are clamped at a

particular fixed geometry specified by the constant vectors

xi
n = ai, i = 1,2,...,A, takes the form

Hcnða;xeÞ ¼ ��h2

2m

XN

i¼1

r2ðxe
i Þ �

e2

4p�0

XA

i¼1

XN

j¼1

Zi

jxe
j � aij

þ e2

8p�0

XN

i;j¼1

0
1

jxe
i � xe

j j
þ e2

8p�0

XA

i;j¼1

0
ZiZj

jai� ajj
ð1Þ

Although the only variables in the problem are the

electronic ones, it is customary to incorporate the nuclear

repulsion energy into the electronic equation. The nuclear

repulsion term is merely an additive constant and so does

not affect the form of the electronic wavefunction: it

affects the spectrum of the clamped nuclei Hamiltonian

only trivially by changing the origin of the energy.

The clamped nuclei problem can have solutions of the

form

Hcnða; xeÞwcn
p ða; xeÞ ¼ Ecn

p ðaÞw
cn
p ða; xeÞ ð2Þ

The full Coulomb Hamiltonian may be written as

Hðxn; xeÞ ¼ � �h2

2m

XN

i¼1

r2ðxe
i Þ þ

e2

8p�0

XN

i;j¼1

0
1

jxe
i � xe

j j

� e2

4p�0

XA

i¼1

XN

j¼1

Zi

jxe
j � xn

i j

� �h2

2

XA

k¼1

r2ðxn
kÞ

mk
þ e2

8p�0

XA

i;j¼1

0
ZiZj

jxn
i � xn

j j
ð3Þ
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It is easily established that the Coulomb Hamiltonian is

invariant under the coordinate transformations that

correspond to uniform translations, rotation-reflections

and permutations of particles with identical masses and

charges.

Kato [5] established that the Coulomb Hamiltonian, H,

is essentially self-adjoint. This means that it has a unique

self-adjoint extension and that the domain of the operator is

identical with the domain of its adjoint.1 This property

includes Hermiticity but is stronger than Hermiticity, and

guarantees that the time evolution

WðtÞ ¼ expð�iHt=�hÞWð0Þ

of a Schrödinger wavefunction is unitary, and so conserves

probability. This is not true for operators that are Hermitian

but not self-adjoint. It is easy enough to construct examples

of such operators; an example given by Thirring [6] is of

the radial momentum operator �i�ho=or acting on functions

/(r), /(0) = 0 with 0 B r \?.

It was pretty obvious to applied mathematicians that the

kinetic energy operator alone is indeed self-adjoint because

of their classical mechanical experience. It was shown by

Stone in the 1930s that multiplicative operators of the kind

specified above are also self-adjoint but it was entirely un-

obvious that the sum of the operators would be self-adjoint

because the sum of the operators is defined only on the

intersection of their domains.

What Kato showed in Lemma 4 of his amazing paper

was that for a range of potentials V including Coulomb

ones, and for any function f in the domain D0 of the full

kinetic energy operator T0, the domain of full problem DV

contains D0 and there are two constants a, b such that

jjVf jj � ajjT0f jj þ bjjf jj

and that a can be taken as small as is liked. This result is

often summarized by saying that the Coulomb potential is

small compared to the kinetic energy.

Given this result he proved in Lemma 5 that the usual

operator is indeed, for all practical purposes, self-adjoint

and is bounded from below.

Why worry about this? Well, if the operator is not self-

adjoint then it could support solutions interpretable as a

particle falling into a singularity or getting to infinity in a

finite time and these are unacceptable as physical solutions.

Curiously enough these are possible solutions in the clas-

sical mechanics of three bodies. Thus, one can expect that

un-physical solutions will not arise from solving the

problem specified by the Coulomb Hamiltonian.

Because of the symmetry of the Hamiltonian, its

eigenfunctions will be basis functions for irreducible

representations (irreps) of the translation group in three

dimensions, the orthogonal group in three dimensions and

for the various symmetric groups corresponding to the sets

of identical particles.

It is sometimes asserted that the clamped-nuclei Ham-

iltonian can be obtained from the Coulomb Hamiltonian by

letting the nuclear masses increase without limit. The

Hamiltonian that would result if this were done would be

Hnnðxn; xeÞ ¼ � �h2

2m

XN

i¼1

r2ðxe
i Þ �

e2

4p�0

XA

i¼1

XN

j¼1

Zi

jxe
j � xn

i j

þ e2

8p�0

XN

i;j¼1

0
1

jxe
i � xe

j j
þ e2

8p�0

XA

i;j¼1

0
ZiZj

jxn
i � xn

j j

ð4Þ

It would seem to have solutions, by analogy with Eq. 2,

Hnnðxn; xeÞwnn
p ðxn; xeÞ ¼ Enn

p ðxnÞwnn
p ðxn; xeÞ ð5Þ

Assuming that full problem had eigenstates such that

Hðxn; xeÞwðxn; xeÞ ¼ Ewðxn; xeÞ ð6Þ

then, if the solutions of Eq. 5 were well defined, it would

seem that they could be expanded as a sum of products of

the form

wðxn; xeÞ ¼
X

p

UpðxnÞwnn
p ðxn; xeÞ ð7Þ

In the Hamiltonian Eq. 4, the nuclear variables are free

and not constant and there are no nuclear kinetic energy

operators to dominate the potential operators involving

these free nuclear variables. The Hamiltonian thus

specified cannot be self-adjoint in the Kato sense. The

Hamiltonian can be made self-adjoint by clamping the

nuclei because the electronic kinetic energy operators can

dominate the potential operators which involve only

electronic variables. The Hamiltonian Eq. 1 is thus a

proper one and the solutions of Eq. 2 are well defined. But,

because the Hamiltonian Eq. 4 is not self-adjoint it is not

clear how the proposed solutions of Eq. 5 could be

properly defined. But assuming that they can be defined,

it was observed more than 30 years ago [7] that the

arguments for an expansion of Eq. 7 are quite formal

because the Coulomb Hamiltonian has a completely

continuous spectrum arising from the possibility of

uniform translational motion and so its solutions cannot

be properly approximated by a sum of this kind. This

means too that the arguments of Born and Oppenheimer [8]

and by Born [9] for his later approach to representations of

this kind are also quite formal.

As a basis for the Born-Oppenheimer and the Born

approach, it is commonly assumed that it is possible to

construct an analytic potential function VðxnÞ such that

1 The work was completed in 1944 and was actually received by the

journal in October 1948.
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Ecn
p ðaÞ ¼ VðaÞ; for some p and for all a ð8Þ

and that this potential forms an adequate starting point for a

discussion of the nuclear motion part of the full problem.

Examination of the form 1 makes it clear, however, that

Ep
cn(a) takes the same value for all choices of a that differ

from a given choice merely by a uniform translation.

Similarly, it remains unchanged if the a differ only by a

constant orthogonal transformation. Thus, any potential

formed according to Eq. 8 will have some variables under

any change of which no change in the potential will be

described. In the context of calculations of molecular

spectra, these variables are often referred to as redundant

ones. It is also the case that Ep
cn(a) is invariant under the

permutation of any nuclei with the same charge (nuclear

mass does not enter into Eq. 2). This means that the

potential in Eq. 8 will have the same value for all geom-

etries that can be obtained from a given geometry by means

of a permutation of nuclei with the same charge. Should the

potential have any minima at all, it always has as many as

there are permutations of nuclei with the same charge. This

would seem to make the assumption of a single isolated

minimum in the potential, which is essential to the usual

account of the Born-Oppenheimer approximation, a rather

too restrictive one for comfort, except perhaps in the case

of the diatomic system.

It is thus not at all clear to precisely which questions the

clamped-nuclei Hamiltonian provides the answer and a

further discussion of the properties of the Coulomb Ham-

iltonian is required before the clamped nuclei problem can

be put into a form proper for yielding a potential. There are

two main ways in which such a discussion can be

attempted. If it is desired to stay with the Coulomb Ham-

iltonian in its laboratory-fixed form then the solutions must

be expressed in coherent states (wave- packet) form to

allow for their continuum nature. If the solutions are

required as discrete forms, then the translational motion

must be separated from the Coulomb Hamiltonian and the

solutions of the remaining translationally invariant part

must be used. It is in this last approach that it is easiest to

make contact with the arguments of [1] and which will be

considered in the following section.

2.1 The separation of translational motion

All that is needed to remove the centre of mass motion

from the full molecule Hamiltonian is a linear point

transformation symbolized by

ðtnÞ ¼ xV ð9Þ

In Eq. 9 t is a 3 by NT - 1 matrix (NT = N ? A) and n is a

3 by 1 matrix, so that the combined (bracketed) matrix on

the left of Eq. 9 is 3 by NT. V is an NT by NT matrix which,

from the structure of the left side of Eq. 9, has a special last

column whose elements are

ViNT
¼ MT

�1mi; MT ¼
XNT

i¼1

mi ð10Þ

Hence n is the standard centre-of-mass coordinate

n ¼ MT
�1
XNT

i¼1

mixi ð11Þ

As the coordinates tj, j = 1, 2,...,NT -1 are to be

translationally invariant,

XNT

i¼1

Vij ¼ 0; j ¼ 1; 2; . . .;NT � 1 ð12Þ

on each remaining column of V and it is easy to see that

Eq. 12 forces tj ? tj as xi ? xi ? a, all i.

The ti are independent if the inverse transformation

x ¼ ðtnÞV�1 ð13Þ

exists. Every element of the bottom row of V-1 must be the

same and constant because of Eq. 12 and, without loss of

generality, may be required to be

ðV�1ÞNT i ¼ 1 i ¼ 1; 2. . .;NT ð14Þ

The inverse requirement on the remainder of V-1 implies

that

XNT

i¼1

ðV�1Þjimi ¼ 0 j ¼ 1; 2; . . .;NT � 1 ð15Þ

The Hamiltonian Eq. 3 in the new coordinates becomes

Hðt; nÞ ¼ � �h2

2

XNT�1

i¼1

1

lii

r2ðtiÞ �
�h2

2

XNT�1

i;j¼1

0
1

lij

r~ðtiÞ � r~ðtjÞ

þ e2

8p�o

XNT

i;j¼1

0
ZiZj

rijðtÞ
� �h2

2MT
r2ðnÞ

¼ H0ðtÞ � �h2

2MT
r2ðnÞ ð16Þ

Here, the positive constants 1/lij are given by

1=lij ¼
XNT

k¼1

mk
�1VkiVkj; i; j ¼ 1; 2; . . .;NT � 1 ð17Þ

The operator rij is the interparticle distance operator

expressed as a function of ti. Thus,

rijðtÞ ¼
X

a

XNT�1

k¼1

ðV�1Þkj � ðV�1Þki

� �
tak

 !2
0

@

1

A
1=2

ð18Þ

In Eq. 16 the r~ðtiÞ are gradient operators expressed in the

Cartesian components of ti and the last term represents the
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centre-of-mass kinetic energy. Because the centre-of-mass

variable does not enter the potential energy term, the

centre-of-mass motion may be separated off completely so

that the eigenfunctions of H are of the form

TðnÞWðtÞ ð19Þ

where W(t) is a wavefunction for the Hamiltonian H0ðtÞ,
Eq. 16, which will be referred to as the translationally

invariant Hamiltonian. The eigenfunctions of this Hamil-

tonian will be basis functions for irreps of the orthogonal

group in three dimensions and for the various symmetric

groups of the sets of identical particles.

It should be emphasized that different choices of V are

unitarily equivalent so that the spectrum of the transla-

tionally invariant Hamiltonian is independent of the par-

ticular form chosen for V, provided that it is consistent

with Eqs. 10 and 12. In particular, it is perfectly possible to

put the kinetic energy operator into diagonal form by

choosing an orthogonal matrix U that diagonalizes the

positive definite symmetric matrix of dimension NT - 1

formed from the 1/lij and then replacing elements of the

originally chosen V according to

Vij !
XNT�1

k¼1

VikUkj; j ¼ 1; 2. . .;NT�1

As can be seen from Eq. 18, the practical problem with any

choice of V is the complicated form given to the potential

operator.

2.2 Choosing electronic and nuclear variables in the

translationally invariant Hamiltonian

In order to identify the electrons, let the translationally

invariant electronic coordinates be chosen with respect to

the centre-of-nuclear mass

te
i ¼ xe

i � X; X ¼ M�1
X

i¼1

mix
n
i ; M ¼

XA

i¼1

mi

in the case of the atom A = 1 and the origin is the nucleus.

Other coordinate choices are possible, but this choice

avoids a term in the kinetic energy operator coupling the

electronic and nuclear variables and which allows the

electronic part of the potential to be written in terms of the

electronic variables and the clamped nuclei positions (see

[2, 10, 11]).

There is no need to specify the proposed A-1 transla-

tionally invariant nuclear variables tn other than to say that

they are expressed entirely in terms of the laboratory

nuclear coordinates by means of a matrix Vn exactly like V

in Eq. 9, but with side A and with M in the place of MT and

X in the place of n. It is also sometimes useful to define a

set of redundant Cartesian coordinates

xn
i ¼ xn

i � X; i ¼ 1; 2; . . .;A; so that
XA

i¼1

mix
n
i ¼ 0 ð20Þ

Of course the laboratory nuclear variable xi
n cannot be

completely written in terms of the A-1 translationally

invariant coordinates arising from the nuclei, but in the

electron-nucleus attraction and in the nuclear repulsion

terms the centre-of-nuclear mass term appears in both

variables in the term and cancels. For ease of writing, xi
n

will continue to be used in those terms but it should be

remembered that what is written in such a term is really a

function of the translationally invariant coordinates defined

by the nuclear coordinates. On making this choice of

electronic coordinates the electronic part of Eq. 16 is

H
0eðxn; teÞ ¼ � �h2

2m

XN

i¼1

r2ðte
i Þ �

�h2

2M

XN

i;j¼1

r~ðte
i Þ � r~ðte

j Þ

� e2

4p�0

XA

i¼1

XN

j¼1

Zi

jte
j � xn

i j

þ e2

8p�0

XN

i;j¼1

0
1

jte
i � te

j j
þ
XA

i;j¼1

0
ZiZj

jxn
i � xn

j j
ð21Þ

The electronic Hamiltonian is properly translationally

invariant and would yield the usual form where the

nuclear masses increase without limit. It has been noted

[4] that to take Eq. 21 as the electronic Hamiltonian is

inconsistent with a power series solution in terms of the

inverse nuclear mass because the Hamiltonian itself

already contains a term in the first power of the inverse

nuclear mass. There is however no need to consider this

term at the first stage of development of a solution to the

full problem and it can be included at the point where

terms of similar magnitude are considered. The remaining

part of Eq. 21 is then exactly the same as the clamped

nuclei form. The clamped nuclei form can be deployed

consistently in an account of solutions to the full problem

only if a uniform translational factor is included in the

full solution or if the translational motion of the centre-of-

mass is subtracted, as in the work of Nakai [12] (see also

[13]), to yield a problem from which the continuous

spectrum has been removed.

The nuclear part involves only kinetic energy operators

and has the form:

KnðtnÞ ¼ ��h2

2

XA�1

i;j¼1

1

ln
ij

r~ðtn
i Þ � r~ðtn

j Þ ð22Þ

with the inverse mass matrix defined as a special case of

Eq. 17 involving only the original nuclear variables.

Both Eqs. 21 and 22 are invariant under any orthogonal

transformation of both the electronic and nuclear variables.

If the nuclei are clamped in Eq. 21 then invariance remains
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only under those orthogonal transformations of the elec-

tronic variables that can be re-expressed as changes in the

positions of nuclei with identical charges while maintain-

ing the same nuclear geometry. The form of Eq. 21

remains invariant under all permutations of the electronic

variables and is invariant under permutation of the vari-

ables of those nuclei with the same charge. Thus, if an

electronic energy minimum is found at some clamped

nuclei geometry there will be as many minima as there are

permutations of identically charged nuclei.

The kinetic energy operator of Eq. 22 is invariant under

all orthogonal transformations of the nuclear variables and

under all permutations of the variables of nuclei with the

same mass.

The splitting of the Hamiltonian into two parts breaks

the symmetry of H0ðtÞ for each part exhibits only a sub-

symmetry of the full problem. If wavefunctions derived

from approximate solutions to Eq. 21 are to be used to

construct solutions to the full problem utilizing Eq. 22,

care will be needed to couple the sub-symmetries to yield

solutions with full symmetry.

2.2.1 Atoms

For the atom there is no nuclear kinetic energy part and,

denoting the nuclear mass by mn, the full Hamiltonian is

simply the electronic Hamiltonian.

H
0eðteÞ ¼ � �h2

2m

XN

i¼1

r2ðte
i Þ �

�h2

2mn

XN

i;j¼1

r~ðte
i Þ � r~ðte

j Þ

� e2

4p�0

XN

j¼1

Zi

jte
j j
þ e2

8p�0

XN

i;j¼1

0
1

jte
i � te

j j
ð23Þ

The electronic problem for the atom of Eq. 23 has

exactly the same form and symmetry as the full problem

and meets the requirements for Kato self-adjointness, for

there is a kinetic energy operator in all of the variables that

are used to specify the potential terms. This would continue

to be the case where the nuclear mass increases without

limit.

The atom is sometimes used as an illustration when

considering the original form of the Born-Oppenheimer

approximation, as in [14], but the only aspect of the

approximation that can be thus illustrated is the transla-

tional motion part and that is easily considered in first order

by treating the second term in Eq. 23 as a perturbation to

the solution obtained using an infinite nuclear mass. The

inclusion of this term in this way is analogous to making

the usual diagonal Born-Oppenheimer correction that can

be made exactly in the case of any one-electron atom (see

[15]). As noted in Ref. [1], it is usually made approxi-

mately simply by including the diagonal part of the mass

polarization term (the second term on the right in Eq. 23)

to produce an electronic reduced mass

1=le ¼ 1=mn þ 1=m

in the place of 1/m.

The Hamiltonian Eq. 23 maintains full symmetry and is

invariant under electronic permutations and under rotation-

reflections of the electronic coordinates. Trial functions are

usually constructed from atomic orbitals and from their

spin-orbitals. Permutational antisymmetry is achieved by

forming from the spin-orbitals, Slater determinants. Rota-

tional symmetry is usually realized using orbitals that form

bases for representations of the rotation group SO(3) by

subsequent vector-coupling. Spin-eigenfunctions too are

achieved by vector coupling.

2.2.2 Molecules

For a molecule there is always a nuclear kinetic energy part

to the operator and therefore self-adjointness must be

achieved by explicit construction. Although the discussion

that follows is, for the most part, quite general, explicit

consideration is confined to the diatomic in order to avoid

overburdening the exposition with details. For a system

with two nuclei, the natural nuclear coordinate is the

internuclear distance which will be denoted here simply as

t. When needed to express the electron-nuclei attraction

terms, xi
n is simply of the form ait where ai is a signed ratio

of the nuclear mass to the total nuclear mass. In the case of

a homonuclear system ai ¼ �1
2

. The di-nuclear electronic

Hamiltonian is

H
0eðteÞ ¼ � �h2

2m

XN

i¼1

r2ðte
i Þ �

�h2

2ðm1 þ m2Þ
XN

i;j¼1

r~ðte
i Þ � r~ðte

j Þ

� e2

4p�0

XN

j¼1

Z1

jte
j þ a1tj þ

Z2

jte
j þ a2tj

 !

þ e2

8p�0

XN

i;j¼1

0
1

jte
i � te

j j
þ Z1Z2

R
; R ¼ jtj; ð24Þ

while the nuclear kinetic energy part is:

��h2

2

1

m1

þ 1

m2

� �
r2ðtÞ � ��h2

2l
r2ðtÞ: ð25Þ

The electronic part is not self-adjoint in the manner pre-

scribed by Kato because it contains no kinetic energy terms

involving the nuclear variable which would dominate the

potential energy terms. The full Hamiltonian would not be

Kato self-adjoint if both nuclear masses were to increase

without limit either. It is seen from Eq. 25, however, that if

only one nuclear mass increases without limit then the

kinetic energy term in the nuclear variable remains in the
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full problem and so the Hamiltonian remains self-adjoint in

the Kato sense.

The di-nuclear case has been considered numerically by

Frolov [16] in a study of the hydrogen molecular ion. In

extremely accurate calculations on the discrete states of

this system, he investigated what happened when first one

and then two nuclear masses are increased without limit.

He showed that when one mass increased without limit,

any discrete spectrum persisted but when two masses were

allowed to increase without limit, the Hamiltonian ceased

to be well defined and this failure led to what he called

adiabatic divergence in attempts to compute discrete

eigenstates. This sort of behaviour would certainly be

anticipated from the present discussion.

Irrespective of any choices made for the nuclear masses,

the electronic Hamiltonian Eq. 24 becomes self-adjoint in

the Kato sense if the nuclei are clamped for then the

nuclear variables in the potential terms become constants

and the only variables are the electronic ones. So the

clamped nuclei potential is properly dominated by the

electronic kinetic energy. Thus, the usual practice of

clamped nuclei electronic structure calculations is a per-

fectly proper one.

Writing the variable t in spherical polar coordinates, R,

b and a where tz = Rcos b, where the clamped nucleus

Hamiltonian is to be used to define a potential, it is easily

seen that for t = a, R = a then

EcnðaÞ ¼ VðaÞ ð26Þ

so that the potential has the form VðRÞ: But the potential is

not just a curve, it is a series of spherical shells of rotation

swept out by the curve by all choices of b and a. It is thus a

genuine central-field potential. If the internuclear distance

is fixed but a allowed to rotate or invert then Ecn(a) is a

sphere of constant energy as swept out by the variables b
and a at radius a. If a is oriented so as to define a z-axis

then Ecn(a) will take the same value at ? az and -az so that

there is a minimum at ? az then there will be another at -

az. The electronic Hamiltonian is not invariant under

inversion of the nuclear variables alone unless the two

nuclei have identical charges in which case inversion and

permutation will have identical effects. In differential

geometry terms, the potential is homeomorphic to S2.

The Hamiltonian Eq. 24 is invariant under all rotations

of the electronic coordinates about the internuclear axis and

all reflections in a plane containing the internuclear axis.

The electronic states can be labelled by a quantum number

m which can take the values 0, ±1, ±2 and so on corre-

sponding to z-component of the electronic angular

momentum about the internuclear axis.

It is easily seen that the potential will tend to increase

without limit as R?0 but the behaviour as R?? presents

a problem. To see this, consider the asymptotic behaviour

of the electron–nucleus potential terms in the case of the

one-electron homonuclear di-hydrogen molecule. The

electronic coordinate is

te ¼ x� 1

2
ðxn

1 þ xn
2Þ ð27Þ

where x is the laboratory coordinate of the electron.

As the internuclear distance becomes very large, the

nuclear repulsion term becomes very small and one would

expect the trial wave function to approach the wave func-

tion for a one-electron ion corresponding to one of the

atoms. Thus, one might expect the lowest energy wave-

function to be of the form

Ne�cr; r ¼ x� xn
1; r ¼ jrj

for instance. However, working in the chosen coordinate

set

r ¼ te � 1

2
t

so that the expected asymptotic electronic solution could be

expressed only in terms of both the electronic and nuclear

variables. This does not, of course, mean that the potential

cannot approach the required value. It simply means that it

cannot do so in any calculation in which the trial functions

are confined to electronic functions whose variable origin

is at the centre-of-nuclear-mass.

This sort of difficulty is a general one and obviously not

confined simply to one-electron diatomic molecules. It

would clearly be unwise to attempt to approximate solu-

tions for molecules at energies close to their dissociation

limits in terms of electronic coordinates with origin at the

centre-of-nuclear-mass. A trial function for the general

case of the Born-Huang form

wðtn; teÞ ¼
X

p

UpðtnÞwpðtn; teÞ ð28Þ

where the te have an origin at the centre-of-nuclear mass

could, therefore, approximate only a limited region of the

spectrum of the full problem.

This difficulty cannot be solved by working in the lab-

oratory frame. The solution to the full problem would be

defined in terms of a three-dimensional subspace expressed

in terms of a translation variable and a 3(NT - 1)-dimen-

sional subspace expressible in terms of translationally

invariant variables. Translationally invariant variables must

involve at least a pair of variables and so there must be at

least one such variable which involves a laboratory frame

electron and a laboratory frame nuclear variable. All this

can be easily illustrated by considering the exact ground-

state wavefunction of the hydrogen atom, as is seen in [4].

This point is developed in more detail by Hunter [17] in

a paper considering to what extent a separation of elec-

tronic and nuclear motion would be possible if the exact
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solution to the full problem was actually known wherever

the exact solution is known, Hunter argues [18] that it

could be written in the form

wðtn; teÞ ¼ vðtnÞ/ðtn; teÞ ð29Þ

defining a nuclear wave function by means of

jvðtnÞj2 ¼
Z

wðtn; teÞ�wðtn; teÞdte

then, provided this function has no nodes,2 an ‘‘exact’’

electronic wavefunction could be constructed as

/ðtn; teÞ ¼ wðtn; teÞ
vðtnÞ ð30Þ

if the normalization choice
Z

/ðtn; teÞ�/ðtn; teÞdte ¼ 1

is made. In fact, it is possible [17] to show that v must be

nodeless even though the usual approximate nuclear

wavefunctions for vibrationally excited states do have

nodes. The electronic wavefunction of Eq. 30 is therefore

properly defined and a potential energy surface could be

defined in terms of it as

UðtnÞ ¼
Z

/ðtn; teÞ�H0ðtn; teÞ/ðtn; teÞdte ð31Þ

with H0 defined as in Eq. 16 with t composed of te and tn.

Although no exact solutions to the full problem are known

for a molecule, some extremely good approximate solu-

tions are known for excited vibrational states of H2 and

Czub and Wolniewicz [19] took such an accurate approx-

imation for an excited vibrational state in the J = 0 rota-

tional state of H2 and computed UðRÞ: They found strong

spikes in the potential close to two positions at which the

usual wave function would have nodes. To quote [19]

This destroys completely the concept of a single

internuclear potential in diatomic molecules because

it is not possible to introduce on the basis of non-

adiabatic potentials a single, approximate, mean

potential that would describe well more than one

vibrational level.

It is obvious that in the case of rotations the situation

is even more complex.

Bright Wilson suggested [20] that using the clamped

nucleus Hamiltonian instead of the full one in Eq. 31 to

define the potential might avoid the spikes, but Hunter in

[17] showed why this was unlikely to be the case and

Cassam-Chenai [21] repeated the work of Czub and Wol-

niewicz using an electronic Hamiltonian and showed that

exactly the same spiky behaviour occurred. However,

Cassam-Chenai showed, as Hunter had anticipated, that if

one simply ignored the spikes, the potential was almost

exactly the same as would be obtained by deploying the

electronic Hamiltonian in the usual way. This would seem

to be consistent too with the earlier work of Pack and

Hirschfelder [22].

Although the spiky nature of an ‘‘exact’’ potential has

been demonstrated explicitly only for J = 0 states of a

small diatomic molecule, there is no reason to suppose that

their occurrence is not general. Matters would be further

complicated by rotational motion. Thus, the demonstrably

smooth potentials generated by solving an electronic

problem are simply computationally useful intermediates

in a solution to the full problem. It would therefore seem

unwise to assign too much weight to them in explaining

chemical structure.

In the standard approach to solving the nuclear motion

part of the diatomic problem, the potential VðRÞ is chosen

and the nuclear motion Hamiltonian becomes

��h2

2l
r2ðtÞ þ VðRÞ ð32Þ

Expressing this Hamiltonian in spherical polar coordinates,

one obtains the usual form

��h2

2l
1

R2

o

oR
R2 o

oR

� �
þ 1

2lR2
L2 þ VðRÞ ð33Þ

where L is the operator for the angular part of the nuclear

motion. The angular part of the solution is known analyt-

ically and the solution of the nuclear motion problem

involves only the variable R.

The eigensolutions to this problem are quite naturally

eigenvalues of the nuclear angular momentum and can

easily be chosen with the required permutational symme-

try. But things are not quite so clear for the electronic part

of the problem because one does not in practice have a

form which is explicit in the nuclear variables as it is

computed only at fixed nuclear geometries. It is easy to

achieve the correct permutational symmetry for the elec-

tronic part of the function at each and every nuclear

geometry, but it is not at all easy to see how the electronic

angular momentum of the functions could be coupled to the

nuclear angular momentum to produce the required total

angular momentum eigenfunctions.

In trying to deal with the rotational motion, it is possible

to reformulate the diatomic problem to exhibit explicitly

the angular symmetry of the Hamiltonian. As shown in [23]

and, in a somewhat more general way in [24] it is possible

to define an internal coordinate system by a transforma-

tion that makes the internuclear vector t the z-axis in a

2 A similar requirement must be placed on the denominator in Eq. 12

of Ref. [4] for the equation to provide a secure definition.
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right-handed coordinate system and in this system the

electronic Hamiltonian Eq. 24 becomes

� �h2

2m

XN

i¼1

r2ðriÞ �
�h2

2ðm1 þ m2Þ
XN

i;j¼1

r~ðriÞ � r~ðrjÞ þ VðR; rÞ

ð34Þ

with

VðR; rÞ ¼ e2

8p�0

XN

i;j¼1

0
1

rij
þ e2

4p�0

Z1Z2

R

� e2

4p�0

XN

j¼1

Z1

ri1ðRÞ
þ Z2

ri2ðRÞ

� �
ð35Þ

where the ri is the electronic variables expressed in the

transformed system. In this formulation the t orients freely

and ‘‘clamping the nuclei’’ comes down to simply choosing

R = a. A clamped nuclei solution of Eq. 34 would lead to

a clamped nucleus energy

EcnðaÞ ¼ VðaÞ ð36Þ

rather than the form given by Eq. 26. Thus, any minima in

VðaÞ would not be duplicated by the requirement of

rotational invariance. Inversion is achieved by means of

b! p� b; a! pþ a

and thus involves just the angular part of the formulation.

An identical operation achieves the nuclear permutation.

The electronic Hamiltonian is invariant under neither

operation unless the nuclei have identical charge.

The nuclear kinetic energy operator of Eq. 25 becomes

� �h2

2lR2

o

oR
R2 o

oR
þ 1

2lR2
D1ða; b; rÞ ð37Þ

with

D1ða; b; rÞ ¼ Jx � lxÞ2 þ ðJy � lyÞ2 þ
�h

i
cot bðJy � ly

� �� �

where the electronic angular momentum is

l ¼
XN

i¼1

lðiÞ ¼ �h

i

XN

i¼1

ri �
o

ori
ð38Þ

and the total angular momentum operator is denoted J and

involves both the electronic and nuclear variables in such a

way that Jz ¼ lz: The Jacobian for this transformation is

R2 sin b

It is seen that in this formulation any solution of the

clamped nuclei form of the electronic Hamiltonian Eq. 34

will give rise to a potential which is simply a curve and not

a surface of rotation. However, the angular part of the

nuclear kinetic energy operator now involves the electronic

angular momentum so that the electronic motion and the

overall rotational motion are coupled.

The electronic wave function in this case has the same

axial symmetry as in the previous case and is characterized

by the quantum number m. However, the states can no

longer be regarded as occurring in degenerate pairs for

m [ 0. This is because in the diatomic lz is the z-compo-

nent of the total angular momentum so m can take integer

values lying between J and -J where J is the total angular

momentum. There is no a priori reason to believe that these

states are degenerate, or degenerate in pairs. In fact the

coupling of the electronic and nuclear angular momenta

lifts the m degeneracy and the Hamiltonian becomes a

system of 2J ? 1 coupled partial differential equations.

The phenomenon of K doubling in the molecular spectrum

of a diatomic is explained by this coupling.

Although the interchange of the nuclear variables would

change neither l nor R even if the nuclear masses were

distinct, it would change a and b as seen above and would

change the angular part of the operator Eq. 37 and the

operator is not invariant under such changes unless the

nuclear masses are the same.

In the first of the two possible ways of looking at the

diatomic, one remains in the Cartesian product space

R3 9 R3N and it is thus necessary to give some explicit

consideration to the angular properties of solutions to the

electronic part of the problem. If the usual approach were

taken to approximating solutions to the nuclear motion

Hamiltonian using sums of products of electronic and

nuclear parts, a typical term in the sum used as trial

function for the form 33 would be

/pmðte;RÞLUpmðRÞHLmðb; aÞ ð39Þ

where p denotes an electronic state and L the nuclear

angular momentum quantum number. There are no oper-

ators in the nuclear motion part of the problem which

explicitly couple the electronic and nuclear motions. It is

thus possible to represent for any electronic state, any

number of rotational states specified by values of L, with-

out considering any coupling. L in Eq. 24 is not the total

angular momentum operator and so a description of rota-

tional motion given in these terms yields only an approx-

imate quantum number.

If one transforms to the manifold R? 9 S2 9 R3N then

one can consider explicitly the rotational coupling of

electronic and angular motions. The fact that the transfor-

mation is to a manifold rather than a vector space means

that any operator built using coordinates defined on the

manifold will be well defined only where the Jacobian for

the transformation does not vanish. This does not cause

great problems here because the only places where the

Jacobian vanishes are when R = 0 and where b = 0 and
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b = p. The region around R = 0 is inaccessible because of

the nuclear repulsion term and the exact angular wave-

functions take care of the problem with b.

It would not be consistent to use only a single term in a

product approximation for a trial for the form 37 with a

potential VðRÞ except in considering a J = 0 state. Here,

the minimum consistent product approximation is

XJ

m¼�J

J/pmðr;RÞJUpmðRÞHJmðb; aÞ: ð40Þ

It is only for J = 0 states that the forms 39 and 40 are the

same.

Of course the angular momentum coupling in Eq. 40

implies a coupling of different electronic states, between R
and P states or R and D states for example. To allow

explicitly for that possibility, Eq. 40 should really be

extended to

XJ

m¼�J

X

pm

J/pmðr;RÞJUpmðRÞHJmðb; aÞ ð41Þ

where the electronic state is denoted as pm to indicate that

the state must have quantum number m. Thus for J = 2,

one would need at least five electronic states.

3 Which is the ‘‘correct’’ clamped-nuclei Hamiltonian?

There is clearly a choice between the forms 24 and 34, and

although in the clamped nuclei approximation both would

yield the same energies for any chosen internuclear sepa-

ration a, the resulting energy would be a potential for two

quite different situations.

To generalize from the diatomic case, if the usual

approach was taken to approximating solutions to the

nuclear motion Hamiltonian using sums of products of

electronic and nuclear parts a typical term in the sum used

as trial function for the form 33 would be

/pðte; tnÞUpðtnÞ ð42Þ

where p denotes an electronic state. The solutions are on

the Cartesian product space R3A-3 9 R3N. There is again no

explicit coupling of the nuclear motion to the electronic

and it is thus possible to represent for any electronic state,

any number of rotational states. It is only in the diatomic

case that the nuclear angular momentum can be realized

explicitly as part of the nuclear kinetic energy so it is

neither generally possible to choose U directly as an ei-

genfunction of the nuclear angular momentum, nor is it

possible to choose / directly as an eigenfunction of the

electronic angular momentum. / as usually computed

belongs to the totally symmetric representation of the

symmetric group of each set of nuclei with identical

charges. U could then be a basis function for an irreducible

representation of the symmetric group for each set of

particles with identical masses if the permutational sym-

metry was properly considered in solving the nuclear

motion problem.

Clamped nuclei calculations are usually undertaken so

as to yield a potential that involves no redundant coordi-

nates. Thus, a translationally invariant electronic Hamil-

tonian like Eq. 24 would actually generate a more general

potential than this. A clamped nuclei potential is therefore

more properly associated with the electronic Hamiltonian

after the separation of rotational motion like Eq. 34 than

with the merely translationally invariant one. With this

choice again, the minimum consistent product approxi-

mation is

XJ

m¼�J

J/pmðr;RÞJUpmðRÞjJMm [ ð43Þ

where R represents the 3A-6 internal coordinates invariant

under all orthogonal transformations of the tn and |J M m [
is an angular momentum eigenfunction. The general solu-

tions are on the manifold R3A-6 9 S3 9 R3N though for

triatomic because the three nuclear positions define a plane,

the internal coordinate part of the manifold is confined to

R? 9 R2. It is only in the diatomic case that the electronic

variables play a direct part in the specification of the

angular momentum eigenfunctions and therefore there is

only one internal coordinate. However, the Coriolis cou-

pling terms in the angular part of the Hamiltonian contain

terms in the electronic angular momentum so coupling of

the electronic motion to the angular motion would still be

anticipated (see Sections V and VI of Ref. [11]). It is only

for J = 0 states that the forms 39 and 40 are the same.

Although the angular momentum coupling could imply a

coupling of different electronic states, as it certainly does

in a diatomic, it is not obviously implied in the general

case. To achieve permutational symmetry in the nuclear

motion part of the wave function would in the general case

be very tricky. The nuclei are identified in the process of

defining a body-fixed frame to describe the rotational

motion, even if they are identical. If only a subset of a set

of identical nuclei were used in such a definition, some

permutation of the nuclear variables would induce a change

in the definition of the body-fixed frame and thus spoil the

rotational separation. Thus, permutations of identical

nuclei are considered usually only if such permutations

correspond to point-group operations which leave the

body-fixing choices invariant.

If one considers the clamped nuclei Hamiltonian as

providing input for the full Hamiltonian in which the

rotational motion is made explicit, the basic nuclear motion

problem should be treated as a 2J ? 1-dimensional
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problem. If this is done then the translational and rotational

symmetries of the full problem are properly dealt with.

However, the solutions are not generally basis functions for

irreps of the symmetric groups of sets of identical nuclei

except for such sub-groups as constitute the point groups

used in frame fixing. This restriction of the permutations is

usually assumed justified by appealing to the properties of

the potential surface. The idea here was introduced by

Longuet-Higgins [25] and is widely used in interpreting

molecular spectra.

As noted earlier, the original attempts to justify the

Born-Oppenheimer and the Born approaches from the full

Coulomb Hamiltonian lack secure mathematical founda-

tions. So far there have been no attempts to make the

foundations of the Born approach mathematically secure.

However, the coherent states approach has been used to

give mathematically secure accounts of surface crossings

and a review of the work here can be found in [26]. It

seems very unlikely that it would be possible to provide a

secure foundation for the Born approach in anything like

manner in which it is usually presented.

The Born-Oppenheimer approximation, whose validity

depends on there being a deep enough localized potential

well in the electronic energy, has however been extensively

treated. The mathematical approaches depend upon the

theory of fiber bundles and the electronic Hamiltonian in

these approaches is defined in terms of a fiber bundle. It is

central to these approaches, however, that the fiber bundle

should be trivial, that is that the base manifold and the basis

for the fibers be describable as a direct product of Cartesian

spaces. This is obviously possible with the decomposition

choice made for Eq. 42 but not obviously so in the choice

made for Eq. 43.

The Born-Oppenheimer approach has been put on a

secure foundation for diatomics with solutions of the form

39 in work which is described in a helpful context in [27].

For solutions like Eq. 40, it is possible that more than one

vector (coordinate) space can be constructed on it because

the transformation is to a manifold. In fact, two-coordinate

spaces are possible on S2 a trivial one and a twisted one, the

latter associated with the possibility of an electronic

wavefunction with a Berry phase and the ‘‘twisted’’ solu-

tions are accounted for in [28].

A mathematically satisfactory account for polyatomics

in an approach based on the Eq. 43 has not yet been pro-

vided but it has proved possible to provide one based on the

Eq. 42 (see [29]). Because the nuclear kinetic energy

operator in the space R3A-3 cannot be expressed in terms of

the nuclear angular momentum, it is not possible in this

formulation to separate the rotational motion from the other

internal motions. This work also considers the possibility

that there are two minima in the potential as indeed there

would be because of inversion symmetry if the potential

minimum were at other than a planar geometry. It does not,

however, consider the possibility of such multiple minima

as might be induced by permutational symmetry. It might

be possible to extend the two minima arguments to the

multiple minima case and perhaps provide a mathemati-

cally secure account of the Longuet-Higgins approach to

ignore some of the inconvenient permutations. This has not

so far been attempted.

For a secure account to be given in terms of the sepa-

ration (Eq. 43), which is what is really required if one is to

use the clamped-nuclei electronic Hamiltonian, it would be

necessary to consider more than one coordinate space. On

the manifold S3, at least two-coordinate spaces are required

to span the whole manifold. The internal coordinates within

any coordinate space for five or more particles are such that

it is possible to construct two distinct molecular geometries

at the same internal coordinate specification, so that a

potential expressed in the internal coordinates cannot be

analytic everywhere [30]. Even for triatomic systems,

problems can arise [31].

It is also not clear at present that a multiple minima

argument could be constructed to account for point-group

symmetry in this context. It is possible to show (see Section

IV of [11]) that in the usual Eckart form of the Hamiltonian

for nuclear motion, permutations can be such as to cause

the body-fixed frame definition to fail completely.

4 Conclusions

If it is wished to perform a clamped nuclei calculation on a

molecule containing three or more nuclei, avoiding trans-

lations and rigid rotations, it is necessary to fix the values

of six of the 3A nuclear variables. In practice, this is usually

done by choosing one nucleus, x1
n, at the origin, one

nucleus, x2
n, defining an axis and a third, x3

n, defining a

plane. Every possible geometry of the molecule can be

specified with this choice, except those geometries in

which the three nuclei are co-linear, but not every com-

ponent of the 3A variables will appear in the clamped

nuclei electronic energy as six of them have been chosen to

be zero. This means that even though the clamped nuclei

electronic energy can be specified in terms of a molecular

geometry in which the positions of A points can be given,

the energy itself is a function of only the relative positions

of a subset of the nuclei. Thus performing clamped nuclei

calculations will not make possible the expression of the

electronic energy in anything other than internal coordi-

nates and the electronic energy when expressed in any set

of internal coordinates, cannot be analytic everywhere.

Thus, there cannot really be a ‘‘global’’ potential energy

surface. In any case, as has been seen, the potential, even

locally, cannot be regarded as an approximation to
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anything in particular and thus should be treated simply as

a convenient peg on which to hang further calculations.

From this perspective, the further calculations should

properly be ones in which the electronic Hamiltonian

results from the full Hamiltonian in which the rotational

motion has been made explicit. Such Hamiltonians have

only a local validity and can be defined only where the

Jacobian for the transformation to the rotational variables

does not vanish. However, at present there is no satisfac-

tory account of how nuclear permutational symmetry

should be treated from this perspective, there is neither any

secure mathematical justification of the Born-Oppenheimer

approximation nor of the Born approach.

Naturally any extension of the trial wave function for

the full problem from a single term to a many term form

must be welcomed as an advance, it is simply a technical

advance and it might prove premature to load that technical

advance with too much physical import.
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